If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+72x+320=0
a = 3; b = 72; c = +320;
Δ = b2-4ac
Δ = 722-4·3·320
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{21}}{2*3}=\frac{-72-8\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{21}}{2*3}=\frac{-72+8\sqrt{21}}{6} $
| 2(3x+1)-2x=46 | | 6/5x=90;x=1/15 | | 4x^2+72x+320= | | 49-100x²=0 | | 4x^2+72x+320=04x2+72x+320=0 | | g/2=2.17 | | 5x+2=8+4 | | d-2.9=6.1 | | k+3.5=11.5 | | 4.5x+x=55 | | h-11.6=6.17 | | g/2=1.43 | | X/(110-3x)=1/2 | | 8-4x=16x+2 | | 20x+6x=0 | | 14m-2=7 | | 3(4x-5)-4x+1=3(4x−5)−4x+1=-6−6 | | −5(x+1)+3x−3=-14−14 | | 11y-8y-9=27.06 | | 9y^=186 | | x/7+3=17 | | 13y+27=92 | | 4x+.7=20.7 | | 17=-5x-17 | | 5-5x=x+41 | | 10+2x=6x+34 | | 100-50x+10x-5=200 | | -4x+5=3x+75 | | 50x+10×5=200 | | 5+3x=5x+21 | | 3x+3=-3+5x | | 50x+10x=100+5 |